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Abstract
Systems for retrieving and managing content-based medical images are becoming more important, especially as medical 
imaging technology advances and the medical image database grows. In addition, these systems can also use medical images 
to better grasp and gain a deeper understanding of the causes and treatments of different diseases, not just for diagnostic 
purposes. For achieving all these purposes, there is a critical need for an efficient and accurate content-based medical image 
retrieval (CBMIR) method. This paper proposes an efficient method (RbQE) for the retrieval of computed tomography (CT) 
and magnetic resonance (MR) images. RbQE is based on expanding the features of querying and exploiting the pre-trained 
learning models AlexNet and VGG-19 to extract compact, deep, and high-level features from medical images. There are 
two searching procedures in RbQE: a rapid search and a final search. In the rapid search, the original query is expanded by 
retrieving the top-ranked images from each class and is used to reformulate the query by calculating the mean values for 
deep features of the top-ranked images, resulting in a new query for each class. In the final search, the new query that is 
most similar to the original query will be used for retrieval from the database. The performance of the proposed method has 
been compared to state-of-the-art methods on four publicly available standard databases, namely, TCIA-CT, EXACT09-
CT, NEMA-CT, and OASIS-MRI. Experimental results show that the proposed method exceeds the compared methods by 
0.84%, 4.86%, 1.24%, and 14.34% in average retrieval precision (ARP) for the TCIA-CT, EXACT09-CT, NEMA-CT, and 
OASIS-MRI databases, respectively.
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Introduction

One of the most active medical image processing research 
domains, according to recent studies, is content-based medi-
cal image retrieval (CBMIR). This is because the usage of 
several medical techniques, including ultrasound (US), MR, 
X-ray, and CT, is expanding and accelerating. The similarity 
of the images is considered the most important thing that 

CBMIR’s systems are focused on. The user submits a query, 
and the system retrieves images with the same criterion of 
similarity in descending order. The two fundamental steps 
of every CBMIR technique are feature extraction (offline 
phase) and similarity measurement computations (online 
phase) [1–3]. The CBMIR system’s main architecture is 
shown in Fig. 1. The CBMIR system has many upgrades 
that were created to improve its effectiveness and retrieval 
performance, which can be at the stage of pre-processing 
or extraction [4, 5]. The extensive medical image retrieval 
literature shows that texture-based features are well-accepted 
and popular among researchers worldwide [6–10]. However, 
medical imaging becomes more sophisticated over time as it 
attempts to gather as much information about the patient’s 
anatomy as possible. As a result, developing a powerful 
CBMIR system based solely on texture is insufficient. It 
is, therefore, necessary for the hour to build a system for 
the multi-dimensional retrieval of medical images that 
will combine multi-dimensional information, for example, 
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texture, edge, and shape. It is a fundamental component of 
any CBMIR system that compares an image to a database 
image to determine how similar they are and to find match-
ing pairings for the image [11, 12]. Traditional methods rely 
on low-level extraction by assessing their colors, textures, 
forms, and spatial structure from medical imagery. All fea-
tures are low-level and often do not accurately reflect seman-
tic notions in the images. Using these features for retrieval 
usually yields unsatisfactory results. Therefore, pre-trained 
deep convolutional neural network (DCNN) model features 
have lately achieved superior performance and flexibility 
than classical descriptors in common image retrieval appli-
cations due to the quick advancement of deep learning (e.g., 
image retrieval or object recognition). Rich image semantic 
information is provided by this feature, which is crucial for 
improving the precision of image retrieval.

Having considered all of this in mind, in this paper, the 
RbQE approach has been used to demonstrate an effective 
way to retrieve CT and MR images. The RbQE expands the 
query image by reformulating it based on calculating the 
mean value of the top-ranking images from each class, and 
this expansion method is considered fully automated. The 
RbQE method benefits from the pre-trained DCNN (AlexNet 
and VGG-19) as extractors of features that are compact, 
high-level, and robust toward image noise to best represent 
the medical images and achieve high accuracy. The main 
contributions of our paper are summarized as follows: 

1. Proposed an efficient RbQE medical image retrieval 
method that expands the query in a new automated way.

2. Use the pre-trained deep convolutional neural net-
works (AlexNet and VGG-19) as feature extractors that 
describe and represent medical images to obtain com-

plex and high-level features, which have the best ability 
to withstand external interferences, such as changes in 
lighting, noise, rotation, and blurred images.

3. Extensive tests were carried out to compare the perfor-
mance of the proposed method (RbQE with DCNN) 
with the existing and modern methods, and it demon-
strated that the proposed method exceeds all these meth-
ods in retrieving medical images.

The remainder of the paper is arranged as follows. The 
literature review is shown in the “Literature Review’’ sec-
tion. The proposed method is described in the “Proposed 
Method’’ section. The “Experimental Framework’’ section 
describes the experimental framework used to evaluate the 
performance of the retrieval to the proposed method and 
comparative methods. The experimental results of the pro-
posed method and all comparative methods are presented 
in four standard medical databases in the “Experimental 
Results’’ section. Finally, conclusions are presented in the 
“Conclusion’’ section.

Literature Review

Content-based medical image retrieval (CBMIR) technol-
ogy has a very important role in medical image analysis, 
where the existing CBMIR technology is used to index and 
retrieve medical images by using traditional visual indica-
tors to represent all medical images in the image database. 
Standard descriptors of visual content include texture, edge, 
color histogram, shape, and a large number of variants. In 
the past, CBMIR feature extraction was a critical aspect of 
the accurate retrieval of medical images. CBMIR strives to 

Fig. 1  The CBMIR Main 
Architecture
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remove redundant information by reducing the dimensional-
ity of image data [13, 14].

Medical images are available in different formats, such 
as CT and MRI images. As a result, the authors of [15] pro-
posed a method for detecting CT and MRI co-occurrences 
based on local feature descriptors. The authors in [16] pre-
sent a robust and fast MRI retrieval system for brain images. 
A powerful textural descriptor, known as the local binary 
pattern (LBP), was proposed in [17]. Based on the LBP, 
the feature vector is created by each pixel’s intensity. The 
authors in [18] use LBP, joint LBP, and histograms of image 
intensity to produce a pulmonary emphysema quantitative 
analysis of CT. In [19], the feature extractor technology was 
principally used to evaluate CT images of the chest on the 
basis of structure and local brightness. The authors in [20] 
presented a local ternary co-occurrence pattern (LTCoP). 
In [21], they proposed a BMI approach known as the local 
mesh pattern (LMeP), and the approach provided in [22] 
established an LMePVEP algorithm.

For high-level feature descriptors, in [23, 24], the authors 
present some studies on the ability to obtain efficient images 
using convolutional neural networks (CNNs), which have 
been used in machine learning applications. The authors 
suggested in [25] the AlexNet descriptor medical image 
retrieval system for local bit plane decoding (LBpDAD), 
which combines the benefits of local bit plane decoding with 
the features resulting from a neural network like AlexNet. 
The authors in [26] introduced the histogram of compressed 
scattering coefficients (HCSCs) method, where they created 
a new feature based on employing the transformation in the 
scatter and a specific version of deep networks to determine 
the textural features of CT images. Furthermore, [27] pro-
posed an integrated scattering feature based on two separate 
forms of compressed scattering data: data concentration and 
canonical correlation analysis (CCA). The authors presented 
an image reconstruction network (IR-Net) in [28], where the 
input image would be encoded into a set of features before 
being rebuilt from the encoded features.

When it comes to the expand query approach, the expan-
sion gains from the label data of the top-ranked images that 
are obtained and saved in a feedback session. In the litera-
ture, there have been numerous successful attempts at vari-
ous expansion techniques depending on local, global, and 
CNN features, including certain functionalities that include 
expanding queries and other methods and a recent query 
expansion review in data retrieval [29]. The authors in [30] 
have broken down the expansion model into two compo-
nents: offline and online retrieval. In the offline procedure, 
the Laplacian score method is generalized for computation, 
while the query is classified according to the feature score 
of the relevant items in the online retrieval component of 
the database. Finally, the original query was replaced by 
a slew of first-page results. Their tests with sets of images 

and single-voice objects were far superior to those of their 
opponents.

The authors in [31] introduced the query expansion 
approach, where they used the pre-trained CNN model by 
using the convolutional layer’s learning filters as visual word 
detectors. Combined with geometric testing, query expan-
sion techniques are particularly effective in the context of 
using top-relevant images to expand query-relevant features 
into eventual successful and valid matches, as shown in [32].

The authors of [33] attempted to extend the automated 
query expansion by proposing three extensions, where the 
spatial verification was improved and repositioning was 
done by reflecting the previously evaluated results, and 
suggested an approach that expands the query by integrat-
ing matching features outside the original query limit, uti-
lizing the spatial context. The authors in the latest study 
[34] have created a query expansion template based on the 
mathematical architecture by treating query extension as a 
discrimination-related learning issue, in which a grouping 
model is supervised and learned, and then (LAttQE) offered 
the addition model to communicate data through automatic 
attention between the top-ranking item and the query. The 
top-ranked techniques are increasingly used; in the case 
of building a framework for multimodal query expansion 
through user interaction methods [35], several approaches 
are used to achieve this goal.

The authors in [36] achieved a significant level of accu-
racy in the retrieval of MRI and histopathological images by 
introducing an expansion approach for features extracted by 
pre-trained Residual Networks (ResNets).

Proposed Method

The proposed method has two important parts, which are 
shown in Fig. 2. The first part is an excellent feature extrac-
tor, and the second is an efficient matching and retrieval 
method for medical images. So, two deep feature extrac-
tors and the RbQE (retrieval based on query expansion) 
method have been used in the proposed method. Based on 
pre-trained models, the deep feature extractor can extract 
compact and high-level features to represent all images in 
the medical database. There are two aims of using the deep 
neural network instead of raw pixels in the analysis of medi-
cal images: the first is to extract invariant features, which are 
more robust against different interferences like noise and 
changes in the light that appears during the generation of 
the medical images. Second, there is no need for the deep 
feature extractor to be retrained, if trained offline using a 
huge image database, even in the case of analyzing various 
types and formats of medical images. Consequently, the used 
deep model is likely to dramatically increase computational 
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efficiency and lower calculation costs in comparison to other 
retrieval systems that also use deep models.

In addition, the RbQE method is used to improve the 
matching and retrieval in the CBMIR by expanding the deep 
features of the original query and the construction of a new 
query. The RbQE method relies on two search processes: a 
quick search and a final search. First, a rapid search of the 
database will retrieve the top-ranked images for the origi-
nal query from each database class, and for each class, a 
new query expansion (NQE) will be formed. Secondly, in 
the final search, the image that is most similar (NQE) to 
the query images is taken and used as the final new query 
expansion (FNQE), which is one of the main benefits of 
our suggested method. The next subsections provide more 
information on these feature extractors and query expansion 
methods.

Deep Feature Extraction

We use more robust and efficient deep features to extract 
more discriminative and high-level features for medi-
cal images, thereby minimizing the interference problem. 
Deep learning has gained enormous popularity recently, with 
promising applications in a variety of areas [37]. The basic 

idea behind deep learning has not changed, despite the fact 
that numerous architectures have been proposed and put into 
practice: deep learning is a feature representation learning 
approach that concentrates on huge amounts of unprocessed 
image data and can use different levels of representation. 
This concept is stable in spite of several models of deep 
learning that have been suggested and implemented. Many 
levels of abstraction enable learning data representations 
by computational models with many layers of processing L 
( L > 1 ), where after the input layer, each layer transforms 
the representation of the preceding layer into a more abstract 
representation, then you can obtain complex structures indi-
rectly from large format imagery and ideally use them to 
create the original image or the image of the query after 
studying most of the distinctive variations layer by layer.

In this paper, for medical image retrieval, two types of 
supervised CNN learning models are used as deep neural 
networks. CNN is a form of neural network that has been 
proposed to deal with images and obtain local features 
located in images. To work with high-resolution images, 
CNN has three properties: First, each convolution kernel 
has a small function in depth that is a feature that, despite 
its small size, can distinguish between different images. Sec-
ond, since each convolutional feature map uses the same 

Fig. 2  Illustration of the RbQE method
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convolution kernel, the same deep features may be filtered 
and obtained from different locations in the input image. 
Finally, by subsampling from the convolutional layer to the 
pooling layer, the image’s dimensionality is reduced and 
computing efficiency is increased. Figure 3 shows a pre-
viously trained DCNN model (AlexNet) and Fig. 4 shows 
other previously trained DCNN models (VGG-19), which 
have been trained offline in the ImageNet database [38] and 
contain millions of labelled images.

Significantly deeper neural networks cannot be used for 
medical image processing. Because the small differences 
between identical biomedical images with high-level fea-
tures are difficult to differentiate, the small disparity will 
disappear with greater abstraction. However, a small differ-
ence is particularly essential in biological images and may 
be applied precisely to discriminate biomedical images 
of several types, such as images from our research in the 
OASIS-MRI database used in our research. As shown in 
Fig. 3, the AlexNet, which is inspired by biological pro-
cesses in which the object is recognized from the low-level 
to the semantic level step by step, is typically composed of 
four key components: Firstly, the convolutional layers, which 
are connected to a limited, mostly human visual system loca-
tion by a convolutional kernel and considered the greatest 
highlight of AlexNet. Secondly, the activation functions are 
frequently followed by the convolutional layers, where the 

ReLU (rectified linear unit) activation function is used to 
extract from the input signals the more complicated features. 
Thirdly, the dimensionality of the feature map is lessened by 
the pooling layers, while the convolutional layer sensitiv-
ity is decreased. Finally, at the conclusion of the AlexNet 
structure, the fully connected layer is combined to generate 
a feature vector, which provides the prediction result. By 
applying the backpropagation approach, the loss function 
between the prediction outcomes and ground truth is mini-
mized using the AlexNet training procedure until the error 
loss is considerably reduced or a certain number of iterations 
have been completed. We have used the learned AlexNet as 
an extractor of biomedical frameworks, utilizing the fully 
connected layer-6. We use completely connected layer-6 fea-
tures, since various studies have shown that layer-6 features 
are more efficient than layer-7 features in biomedical image 
processing [39–43].

Convolutional networks with extremely deep layers (up 
to 19 weight layers) (VGG-19) were employed as a feature 
extractor in our paper, where there are 16 convolutional lay-
ers and 3 FC layers, as shown in Fig. 4, where the number 
of channels is quite small, starting at 64 in the first layer 
and growing by a factor of two after each max-pooling layer 
until it reaches 512. In this network (VGG-19), the image 
was transmitted through a stack of a convolutional layer that 
is a composite of filters with an extremely narrow receptive 

Fig. 3  The pre-trained CNN 
(AlexNet) on ImageNet data-
base

Fig. 4  The pre-trained DCNN 
(VGG-19) on ImageNet data-
base
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field 3 × 3 to gripe the notion of up/down, left/right, and 
center. The convolution stride was set to one pixel, and the 
spatial padding of convolution is 1 pixel 3 × 3 convolution 
layers. There are five max-pooling layers, each of which 
was conducted across a 2 × 2 pixel window with stride 2. 
Three Fully Connected (FC) layers follow a stack of convo-
lutional layers: the first two (FC1, FC2) have 4096 channels 
(features) apiece, while the third (FC3) has 1000 channels 
(features), and the soft-max layer is found in the final. Also, 
here we have utilized the fully connected layer-1 (FC1) of 
the VGG-19 as a feature vector extractor. There are also 
various studies that show that FC1 features are more efficient 
than layer-2 (FC2) features in biomedical image processing, 
except in the TCIA-CT database, where FC2 features have 
achieved higher accuracy than FC1 features.

Query Expansion Method

As shown in Fig. 2, which describes the complete idea of the 
expansion of deep features for the original query and the refor-
mulation of a new query for the final search process, the RbQE 
technique employs the mean values of the deep feature values 
for images of the top-ranked after a rapid search using a “Query 
with 4096 Deep Features” (QDF) of the original query to all 
deep features of photos in the database. From each class in the 
database, the top ten similar images to the original query are 

retrieved, and the mean value of deep features for each of the 
top ten is calculated. This process produces a number of NQEs 
equal to the number of classes in the database. After that, the 
most similar NQE to the original query will be taken as the final 
NQE (FNQE), and then the FNQE is used for the final search 
procedure. Table 1 provides a simple numerical example of 
building NQE, where the feature vector dimension for each 
image is 4096 for both AlexNet and VGG-19. Figure 5 illus-
trates the proposed algorithm for the RbQE method.

Experimental Framework

This section presents the computational methods used to 
compare the performance of the proposed method with other 
modern retrieval methods. The name and abbreviations of 
all methods used for comparison with the proposed method 
are presented in Table 2.

Image Similarity Estimation

Similarity values are calculated with the Euclidean Distance 
(ED), which is used to calculate the similarity, for both rapid 
and final search. Let X = ( x1 , x2,..., xn ) and Y = ( y1 , y2,..., 
yn ), two feature vectors with n dimension, the similarity is 
computed as follows:

Fig. 5  RbQE method algorithm

Table 1  NQE based on mean 
values

F1 F2 F3 F4 F5 ⋯⋯ F4096

Img1 0.99 -15.05 -5.02 -41.11 -23.11 ⋯⋯ 6.76
Img2 2.21 –12.71 –3.55 –43.14 –23.29 ⋯⋯ 8.57
Img3 –1.29 –13.40 –7.85 –39.39 –28.45 ⋯⋯ 8.29
Img4 –1.48 –11.07 –3.12 –37.64 –23.31 ⋯⋯ 13.11
Img5 –6.69 –7.70 1.03 –40.86 –22.97 ⋯⋯ 6.07
NQE –1.252 –11.986 –3.702 –40.428 –24.226 ⋯⋯ 8.56
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Performance Estimation

In experiments, every image in the database is used as a 
query, and an image is only relevant if it belongs to the same 
category as the query. Average Precision Retrieval (ARP), 
Average Retrieval Rate (ARR) and Fscore are the three per-
formance metrics used to evaluate each retrieval strategy.

(1)ED(X, Y) =

√

√

√

√

n
∑

i=1

(

xi − yi
)2

(2)

precision ∶ P(q) =
Number of relevant images retrieved

Number of images retrieved

(3)

recall ∶ R(q) =
Number of relevant images retrieved

Number of relevant images in the database

(4)ARP(%) =
100

∣ DB ∣

∣DB∣
∑

i=1

P(Ii)

where ∣ DB ∣ indicates the count of all database images.

Image Model Databases

Experiments were carried out on four publicly available 
image databases with different formats in order to test the 
performance of the RbQE method, namely the TCIA-CT 
database [53], the EXACT09-CT database [54], the NEMA-
CT database [55] for CT image retrieval, and the OASIS-
MRI database1 [56] for MRI image retrieval. Figures 6, 7, 8, 
and 9 respectively show sample of images in each class. The 
four databases used in our experiments are summarized in 
Table 3 in terms of image number, size of each image, class 
number, and images in each class.

(5)ARR(%) =
100

∣ DB ∣

∣DB∣
∑

i=1

R(Ii)

(6)Fscore(%) =
2 × ARP × ARR

ARP + ARR

Table 2  Name and 
Abbreviations of all methods 
used in the comparison

S. No. Abbreviation Method Name Reference Year

1 LBP Local Binary Pattern [17] 1996
2 LTP Local Ternary Pattern [44] 2010
3 LDP Local Derivative Pattern [45] 2010
4 LTrP Local Tetra Patterns [46] 2012
5 AlexNet Deep Convolutional Neural Networks [47] 2012
6 LTCoP Local Ternary Co-Occurrence Patterns [20] 2013
7 LMeP Local Mesh Patterns [21] 2014
8 VGG-16 Visual Geometry Group [48] 2014
9 LWP Local Wavelet Pattern [49] 2015
10 SS3D Spherical Symmetric 3D Local Ternary Patterns [50] 2015
11 ResNet Residual Neural Network [51] 2016
12 HCSCs Histogram of Compressed Scattering Coefficients [26] 2017
13 ST-CCA Scattering Transform with Canonical Correlation Analysis [27] 2018
14 MDMEP Multi-dimensional multi-directional mask maximum edge pattern [52] 2018
15 IR-Net Image Reconstruction Network [28] 2020

Table 3  Databases summary 
used in the experimental 
framework

S. No. Database No. of Images Image Size No. of 
Classes

Images/Class

1 TCIA-CT 604 512 × 512 8 {75, 50, 58, 140, 70, 92, 78, 41}

2 EXACT09-CT 675 512 × 512 19 {36, 23, 30, 30, 50, 42, 20, 45, 50,

24, 28, 24, 35, 40, 50, 35, 30, 28, 55}

3 NEMA-CT 315 512 × 512 9 {36, 18, 36, 37, 41, 30, 23, 70, 24}

4 OASIS-MRI 421 512 × 512 4 {124, 102, 89, 106}

1 https://www.oasis-brains.org
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Experimental Results

This section includes several experiments that demonstrate 
the efficacy of the proposed method RbQE and compare its 
results to those of existing methods listed in Table 2. The 
RbQE method applied two different searching techniques: a 
rapid search for each database class using one query image 
selected from the database’s image collection, where every 
image in the database is considered a query. Then, the final 

search is done using the final NQE (FNQE). Note that all 
searches are automated without user participation or sugges-
tion, which is considered a strong point. The performance of 
the proposed method is compared to that of modern meth-
ods, whether deep learning-based or not.

Retrieval Performance on TCIA‑CT Database

The performance of the RbQE method on the TCIA-CT 
database was evaluated using two feature extractors, AlexNet 
and VGG-19, in addition to VGG-16, to demonstrate that 
VGG-19 with RbQE outperforms VGG-16 with RbQE. 
The retrieval results are shown in Table 4 in terms of ARP, 
ARR, and Fscore . When compared to other methods, the 
suggested RbQE method using VGG-19 performs the best 
on the top 10 images. In terms of ARP, ARR, and Fscore , the 
proposed method outperforms ST − CCAv by 0.84%, 0.16%, 
and 0.27%, respectively. Figure 10 exhibits the TCIA-CT 
database query outcomes of the RbQE method with VGG-
19 features, which shows all the top 10 images in the same 
query image class.

Retrieval Performance on EXACT09‑CT Database

The comparison methods used in the “Retrieval Performance 
on TCIA-CT Database’’ section are also considered and 
evaluated here using the same experimental parameters as 
the TCIA-CT database. The retrieval result of the RbQE with 

Fig. 6  Sample images from each class of TCIA-CT database

Fig. 7  Sample images from each class of EXACT09-CT database

Fig. 8  Sample images from each class of NEMA-CT database

Fig. 9  Sample images from each class of OASIS-MRI database

Fig. 10  Retrieved images for a TCIA-CT database query using RbQE 
with VGG-19
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different feature extractors is shown in Table 5. In compari-
son to other methods, the features of the AlexNet descriptor 
with the RbQE method achieve the highest performance on 
the top 10 images, and the result of the RbQE with VGG-
16 exceeds the RbQE with VGG-19 only on that database, 
while all the descriptors with the RbQE method exceed the 
ST − CCAv method. The outcomes of the AlexNet with the 
RbQE method in relation to ST − CCAv in the ARP, ARR, 
and Fscore ranges are improved by 4.86%, 1.64%, 2.47%. The 
results of the top 10 images obtained using the RbQE search 
technique with AlexNet features are shown in Fig. 11.

Retrieval Performance on NEMA‑CT Database

We also use the NEMA-CT database to evaluate the per-
formance of RbQE with different feature extractors and 
other modern methods. The proposed RbQE with VGG-19 

features achieves the most satisfactory accuracy on the top 
10 images and is superior to all other descriptors used by the 
RbQE. The retrieval results of the RbQE method with VGG-
19 are improved by 1.24%, 0.18%, and 0.36% compared to 
the HCSCs method, as shown in Table 6. The result of the 
top 10 images for the query using the RbQE method with 
VGG-19 features is shown in Fig. 12.

Retrieval Performance on OASIS‑MRI Database

The efficiency of the RbQE method with different feature 
extractors was also compared against another medical image 
retrieval method, IR-Net [28], this method was tested using 
a benchmark database called Open Access Series (OASIS) 
with MRI [56]. We have followed all the settings for com-
parison as in IR-Net, where Table 8 presents the perfor-
mance of the top 10 images in terms of ARP. In Table 7, 

Table 4  Performance of different methods on TCIA-CT database 
with the top 10 matches considered

Method ARP ARR Fscore

LBP 66.91 9.74 17.00
LMeP 73.71 10.77 18.79
LWP 88.40 13.09 22.80
SS3D 80.54 11.71 20.45
HCSCsh 94.74 14.45 25.08
HCSCsv 95.12 14.52 25.20
ST − DCavg 95.80 14.65 25.41
ST − DCmax 95.71 14.58 25.30
ST − CCAh 96.33 14.68 25.48
ST − CCAv 96.45 14.71 25.52
���� ���� ��� − �� ��.�� ��.�� ��.��

���� ���� ��� − �� ��.�� ��.�� ��.��

���� ���� ������� ��.�� ��.�� ��.��

Fig. 11  Retrieved images for an EXACT09-CT database query using 
RbQE with AlexNet

Table 5  Performance of different methods on EXACT09-CT data-
base with the top 10 matches considered

Method ARP ARR Fscore

LBP 65.03 19.51 30.02
LMeP 63.23 18.91 29.11
LWP 83.00 24.87 38.27
SS3D 67.00 20.09 30.91
HCSCsh 90.74 28.53 43.41
HCSCsv 91.50 28.83 43.84
ST − DCavg 92.09 29.07 44.19
ST − DCmax 91.93 28.98 44.07
ST − CCAh 91.92 28.90 43.98
ST − CCAv 93.35 29.44 44.76
���� ���� ��� − �� ��.�� ��.�� ��.��

���� ���� ��� − �� ��.�� ��.�� ��.��
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Fig. 12  Retrieved images for a NEMA-CT database query using 
RbQE with VGG-19
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the RbQE method with AlexNet, VGG-16, and VGG-19 
features exceeds other existing methods as shown group-
wise in terms of ARP. On the top 10 images, the RbQE 
with AlexNet features performs with the highest level of 
accuracy compared to the RbQE with VGG-16 and VGG-19. 
The retrieval results of the proposed method are improved 
by 14.51% on average group-wise compared with the IR-Net 
method. The results of the query using the RbQE method 
with AlexNet features are shown in Fig. 13.

Time Complexity

The feature extraction average time, retrieval average time, 
and total CPU time in seconds are shown in Table 9 using the 
proposed RbQE with the different feature extraction meth-
ods (VGG-16, VGG-19, and AlexNet) over each database 
(TCIA-CT, EXACT09-CT, NEMA-CT, and OASIS-MRI). 

All experiments were carried out on a computer equipped 
with an Intel(R) Core(TM) i7-4510U processor running 
at 2.00 GHz, 8 GB of RAM, and a 64-bit Windows 10 
Enterprise LTSC operating system. The total CPU time of 
AlexNet is less than VGG-16 and VGG-19. The retrieval 
times of VGG-16, VGG-19, and AlexNet are equal on the 
same database because they have the same dimension of 
feature vectors (4096).

Discussion

As we described earlier in the methodology’s main frame-
work, there are two search processes: a rapid search using 
a single query image chosen at random from each class of 
images, followed by a final search utilizing newly expanded 
queries. One of the key advantages of our proposed method 
is that the images retrieved from this search are used as input 
for the expansion process automatically, without any user 
intervention or suggestion. The newly created query images 
will then be utilized in the final search, and all evaluation 
metrics will be produced based on the results of this search. 
Our proposed method has been proven to be superior in its 
retrieval ability in comparison to all the existing and state-
of-the-art methods. Our method depends on improving three 
basic processes in the CBMIR framework to improve the 
medical image retrieval process: feature extraction, similar-
ity measurement, and query expansion. Firstly, in the pro-
cess of extracting features from medical images, we focus on 
extracting deep and high-level features able to represent the 
medical images with high accuracy, especially since medi-
cal images contain more details than natural images. These 
details are difficult to represent using the local descriptors 
that extract low-level features, leading to an increase in 

Table 6  Performance of different methods on NEMA-CT database 
with top 10 matches considered

Method ARP ARR Fscore

LBP 90.55 29.33 44.31
LTCoP 92.15 30.31 45.62
LMeP 93.09 30.62 46.08
LWP 95.32 31.33 47.16
SS3D 92.24 30.26 45.57
LTP 92.00 30.23 45.51
LDP 94.22 31.08 46.74
LTrP 93.69 30.96 46.54
HCSCs 98.33 33.64 50.13
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Fig. 13  Retrieved images for an OASIS-MRI database query using 
RbQE with AlexNet

Table 7  Performance of different methods on OASIS database in 
terms of ARP for group-wise

Method Group1 Group2 Group3 Group4 Average

LBP 55.08 35.20 32.70 51.60 43.64

LTCoP 50.08 41.08 34.16 55.19 45.12

SS3D 44.19 39.02 35.73 41.42 40.08

LTP 52.90 37.06 35.73 51.32 44.25

LTrP 52.26 37.35 34.04 43.21 41.75

MDMEP 69.52 50.59 48.31 77.64 62.49

AlexNet 68.87 43.73 41.01 74.72 57.08

ResNet 69.11 45.59 44.27 66.42 56.35

VGG-16 70.73 44.61 38.09 61.04 53.62

IR-Net 77.10 55.29 57.19 88.40 69.49
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the problem of the semantic gap that occurs between both 
the visual input of the human visual system (HVS) and the 
system of imaging when lost information in the process of 
representation of the image is converted from high-level 
semantics to low-level features to reduce this problem and 
achieve high accuracy. We have focused on using deep learn-
ing descriptors that produce high-level features for medical 
images, so we found that pre-trained DCNN models can be 
used to achieve these goals. After testing and comparing 
many pre-trained DCNN models, we found that AlexNet 
and VGGNets achieve high accuracy in representing medical 
images. According to its characteristics, as we mentioned 
before, the AlexNet achieves high accuracy in represent-
ing the most complex and difficult datasets in representa-
tion (EXACT09-CT and OASIS-MR) because of the high 
similarity between classes and complex details inside the 
images, as shown in Figs. 7 and 9 respectively. For VGG-
Nets, we found that VGG-19 provided a better representation 

of the datasets (TCIA-CT and NEAM-CT) than VGG-16 and 
AlexNet. Secondly, in the process of similarity measure-
ment, the Euclidean distance (ED) has been used in other 
CBMIR methods, but we want to find if there is any other 
similarity measurement method that can enhance the result 
with us, so we have tested many methods such as Euclid-
ean distance, Manhattan distance, and chi-square distance. 
Then, in the end, we found that ED achieves high accuracy 
in similarity measurement and enhancement of the result. 
Thirdly, the process of query expansion is considered the 
core of the RbQE method, where this process has two parts: 
the first part is to obtain the NQE for deep features of the top 
10 images from each class for enhancement of the retrieval 
process, and the second part is to calculate the similarity 
between the original query and all NQEs for obtaining the 
most similarly formed NQE for the original query, which 
means that the original query is from the same class as that 
NQE, and then this NQE will be used in the final search, 

Table 8  Performance of 
different methods on OASIS 
database in terms of ARP for 
top 10 matches

Method Top1 Top2 Top3 Top4 Top5 Top6 Top7 Top8 Top9 Top10

LBP 100 72.92 61.20 56.89 53.25 50.04 48.63 47.21 45.87 44.66
LTCoP 100 73.87 62.79 57.66 54.49 51.58 49.37 47.57 46.93 45.82
SS3D 100 68.53 56.77 51.54 47.89 45.68 43.77 42.37 41.44 40.45
LTP 100 73.63 63.42 57.84 53.87 51.46 49.37 47.77 46.45 45.04
LTrP 100 70.67 59.62 52.55 48.69 47.43 45.81 44.30 43.34 42.52
MDMEP 100 81.47 73.87 70.19 67.84 66.71 65.52 63.9 63.37 62.49
AlexNet 100 80.88 73.56 68.41 65.46 62.98 61.83 60.54 59.46 58.36
ResNet 100 78.50 71.18 67.99 64.94 62.87 60.54 59.26 58.38 57.48
VGG-16 100 76.60 68.88 63.84 61.24 59.62 58.23 57.60 56.03 55.06
IR-Net 100 83.37 78.62 76.37 74.68 73.44 72.21 71.62 70.89 70.45
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Table 9  CPU elapse time (sec) 
for proposed RbQE with the 
different features extractions 
methods over all four test 
databases

Database Feature Extraction 
Method

Feature Extraction 
Time (A) (sec)

Retrieval Time (B) 
(sec)

Total CPU 
time (A+B) 
(sec)

TCIA-CT VGG-16 1.69 3.99 5.68
VGG-19 1.84 3.99 5.83
AlexNet 1.09 3.99 5.08

EXACT09-CT VGG-16 1.69 4.93 6.62
VGG-19 1.84 4.93 6.77
AlexNet 1.09 4.93 6.02

NEMA-CT VGG-16 1.69 2.62 4.31
VGG-19 1.84 2.62 4.46
AlexNet 1.09 2.62 3.71

OASIS-MRI VGG-16 1.69 2.5 4.19
VGG-19 1.84 2.5 4.34
AlexNet 1.09 2.5 3.59
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which leads to enhancement of the retrieval process. On the 
other hand, retrieval accuracy is comparatively more crucial 
for medical retrievals, particularly for diagnostic purposes, 
than implementation efficiency. Therefore, our method 
improved these two factors, high retrieval accuracy and low 
time consumption in implementation.

Conclusion

In this paper, we proposed an efficient method (RbQE ) 
for the retrieval of medical images. Our method relies on 
expanding the query image with a fully automatic process 
by reformulating it based on calculating the mean value of 
the top-ranking images from each class. DCNNs (AlexNet 
and VGG-19) have been used as extractors of deep and 
high-level features. Our method has been tested on four 
publicly available databases with different formats (TCIA-
CT, EXACT09-CT, NEMA-CT, and OASIS-MRI), and the 
results showed that our method achieved high accuracy com-
pared to other state-of-the-art CBMIR methods.
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